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ABSTRACT distance between the holes 2s For the depth of the hole
(thickness of the wall) the symbibis used.
Arthur Benade introduced the notion of a tone-hole lattice in
the early 1960s. He found that there exists a so-called
“cutoff frequency” that is determined by the structural

dimensions of the tube and its side-holes. Since then several 25 _,,I 2b’<—
other researchers have studied the properties of the tone-hole i
lattice, especially dealing with the row of open tone-holes. "L'ﬁai %_ ﬁ t
When simulating mechanical and acoustical systems it is ¥} !/} R —— 2 —j_r
convenient to use electromechanical and electro-acoustical zi’ “( \FJ: J.\E J [L §
analogies. Highly developed theories for electric networks N\ =L e ~
can thus be directly used to simulate the behaviour of “"-"""‘;-‘_25__{

musical instruments.

Special software applications, such as Micro-CAP by
Spectrum Software of California, an electrical Circuit
Analysis Program, can be used for this purpose. To build a
bridge from the electrical to the mechanical and acoustical
world there exist so called "macros" that were developed
mainly by the second author, with mechanical input

parameters, so the user need not necessarily think in
electrical terms. Examples of such macros are two-ports
representing lossy cylindrical and conical tubes, two-poles
for short holes etc. all of which occur in wind instruments.
Other useful two-ports are ideal transformers for coupling
mechanical and acoustical parts of the model.

The impedance-versus-frequency diagrams that are easil
derived with the aid of Micro-CAP can help to detect

Fig. 1, Arthur H. Benade’s tone-hole lattice

Three T-shaped elements of the tone-hole lattice are shown in
Fig.1 (copy of the upper part of Fig. 21.8 on page 448 of [2]).
Here we deal only with the lattice of open tone holes. Thus the
air in the holes can move freely and an inner and outer end-
correction needs to be taken into account. Benade uses the
definitiont, = t+1.5b for the effective length of the side holes.

Sectbn 2 is an attempt to reconstruct the tone-hole lattice that
Benade measured to get Fig. 21.3 (page 435 of [2]). In section 3
%he impedance curves for the non-lossy case, based on an article

of Moers and Kergomard [4] are shown. And finally section 4

:;n‘_luerlmes of tht‘)el setverﬁl dimensions of t(;]‘?l tone h(;_lle sysltem'shows a simulation of the lossy case, using the macro for lossy
is also possible to show pressure and flow profiles along pas with circular cross section.

the axis of the tube with opened and closed side-holes. Such
work can lead to a further understanding of the properties of

- The main purpose of the present article is to check the
real woodwind instruments.

simulation against the measurement results and theoretical
formulations. The whole article is about the regular tone-hole
lattice. But different values &, b, s,andt. are used in the three

1. INTRODUCTION following sections. For all simulations the speed of sound is

taken to be 346.2 m/sthe viscosity coefficient 1.86xT0

The applicability of the simulation tool for the tone-hole kg/(ms) and the density 1.186 kd/(air at23°C).
lattice was tested using the work of Benade as an entry
point. In his book Fundamentals of Musical Acoustics [2],
Benade gives an example of a tube 61 cm long extended by 2. BENADE'S TONE-HOLE LATTICE
a tube with side holes. The impedance curve is shown in Fig.
21.3 of the book. No more details about the tube are given
there. Using the simulation tool, the authors were able to
reconstruct approximately the dimensions of the tube
Benade used for his measurement. The influence of the
cutoff frequency can be seen clearly.

Beginning on page 434 of [2] Benade gives an incomplete
descrition of the geometrical setup for the curves of Fig. 21.3

[2]. For the upper curve (pipe alone) he quotes a length of 61 cm
and a first peak of the input impedance at 140 Hz.

The simulation in Fig. 2 corresponds to the lower half of Fig.
21.3 [2]. The dimensions are given in the figure directly. The
first part of Benade's tube (containing no holes) had to be
shortened to 542 mm to keep the first resonance at 140 Hz.

Throughout this article geometrical parameters are used with
the symbols Benade introduced in [1]. The diameter of the
cylindrical bore i2a, the radius of a tone hole 2b and the
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The simulation is based on an increased value for the shear
viscosity (4.8x1.86x1® kg/m/s). The factor 4.8 was found
experinentally, in order to achieve a similar height of the
impedance peak at 140 Hz as Benade measured. A minimal
number of 72 open holes is needed to bring the peaks to the
right of the cutoff frequency down to less than 4 MOhm
(corresponding to Fig. 21.3 of [2]). It is important to stress
that the cutoff frequency as indicated in the figure is
calculated for the non-lossy case, as stated in [1] in the text
(damping is neglected) above equ. (8). The simulation
however - as in Benade’s experiment - involves lossy tube-
and lossy hole-elements.

Some interesting experiments can now be done with the
model. Using the same sizes farand s as before, but
changingb andt in such a way thét stays at 1133 Hz, one
obtairs the result of Fig. 3. Here the andy-ranges have
been reduced compared to Fig. 2. We see here that there is
not much difference in the overall picture. Only the peaks of
the wiggling part above cutoff occur at different frequencies.
The envelope curve does not change at all.

In the next experiment all geometrical parameters exsept
are kept constant. This leads to different cutoff frequencies,
as can be seen in Fig. 4. For the smaBd¢40 mm) the fifth
resonance peak of that part of the tube without holes
(approx. 9 times 140 Hz) falls below cutoff, thus not
affecting the peak very much. The tube without holes had to
be lengthened for the smaller valuesspfo keep the basic
resonance at 140 Hz (552mm fer10mm, 547mm for
s=12.5mm).

3. TWO TREATMENTS OF THE
NON-LOSSY CASE

Benade gives a formula forf, in
449:

fe=0.110 (bfa) ¢ [1/(st)]?

(2]

on page

(1)

This formula was used for calculatirigin the preceding
sectionalthough it contains a small rounding error. Setting
the denominator to zero in the original formula (8) of [1]
gives the correctly rounded value®fL09as the first factor.

In this section the more accurate value is used to calculate
Benade’s cutoff frequency.

The original formula (8) of [1] is shown here (2):

Zo = ( pc ) ( 1+ 5(bfa)? cot(wte/c) tan(ws/c) )1/2 o

ma? )\ 1 - 1(b/a)? cot(wt./c) cot(ws/c)
Solving for zero in the denominator was done with

MicroCAP by searching the pole of the reciprocal value of
the denominator on the frequency scale. Since the circuit
analysis program has numerical limitations a very big but
finite value is the result for the peak height.

Using the parameters of Fig. 2, the cutoff frequency now
becomes 1123 Hz (=1133 x 0.109/0.110).

But there is also another value of the cutoff frequency, that
can be derived from the article of Moers and Kergomard [4].
On page 986 of [4] we see the elements of the transfer
matrix of a single T-shaped element for the non-lossy case.
Z. (corresponding to BenadeZ, “0” probably standing for
“open”) is not given explicitly in [4]. But it can be easily
calculated by substituting the matrix elemetand C into

the equation fol.2 (given below equation (2) on page 986).

By eliminating all the abbreviations used Biand C and
using Benade’s symbols one obtainsZgr

®3)

c

L pe\[1+10/a)? (cf(wt.)) tan(ws/e)\
- (@) ( 1- 1 (b/a)? (¢/(wl.)) cot(ws/c) )

A detailed derivation and a comparison with equation (8) of
[1] can be found in the appendix 1.

Moers and Kergomard [4] give a good approximatiofy, of

(6) onpage 987. It is very close to the frequency where the
denominator ofZ. becomes zero. Rounded to one fdis
1140Hzin both cases, either using (6) or looking for the pole
of Z; calculated from the matrix elemer@sandC.

Next we see a simulation using a number of simple T-shaped
elements (100 elements all in one dimension). Fig. 5 shows
the beginning of the tone-hole lattice. Included are the
impedance sensor at the input and one of the T-shaped
elements. Grounding means that an aperture is open because
a current (volume flow) can flow into zero voltage (zero
pressure).

The two components of the T-shaped element are a non-
lossy tube (transmission line) and a non-lossy inductor. The
tube elements are simply delay lines, giving a delay
corresponding to the speed of sourahd the lengtls of the
element. The inductor represents the acoustic mass of the air
in the hole (including inner and outer end-corrections). The
inductance becomes= ptJ(zh?), taking into account that

the aoustic part is linked to the electrical part by a factor of
l/ared (area=zb?. The density of air at23°C is
p=1.186kg/m in these simulations.

diam=(a_Benade*2) diam=(a_Benade*2)
length=s_Benade

nonlossy

length=s_Benade

impedance sensor nonlossy

impedance b

Fig. 5, Impedance sensor and one T-shaped element
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Fig. 7, Input impedance of tone-hole lattices with, 100, 50 and 20 open holgs and

Now the simulation is used to show the agreement of the
formula for Z. with the model. The magnitude of the input
impedare for a tone-hole lattice with one hundred open
holes is shown (Fig. 6). Unlike the preceding section, there
is no part of the tube without side holes. As there are no
losses, the peaks theoretically go to infinity and the minima
are zero. It is interesting to see that the peaks come closer
together, when approachinfy from higher frequencies.
Reducingthe number of open holes leads to fewer peaks and
fewer minima and the lowest peak moves further away from
fe. Fig. 7 shows the situation for 100, 50 and 20 open holes
in a smaller frequency range than before (again no
damping). Fig. 7 shows the same for 100, 50 and 20 open
holes in a smaller frequency range than before (again no
damping).
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4. PRESSURE AND FLOW ALONG THE
TUBE, LOSSY CASE

We return now to the model with losses. Again there is an
artificial increase of the shear viscosity used, as described in
section 2 (4.8 x 1.86 x T0kg/m/s). The T-shaped element
now corsists of tube elements (macros) only (see Fig. 8). A
detailed description of the tube model is given in appendix 2.
The tube elements themselves do not contain any end
correction. Therefore the length of the side hole (tube) has to
be set tot, (Benade's fomulg, = t + 1.5b is used). The
measuring point$x and Fx will be described later in this
section. There are 68 open side holes used in the following
experiments. At the end of the complete lattice a radiator is
placed, as shown in Fig. 9.
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The input impedance is computed and shown in Fig. 10. As
there are losses, according to the theory there is also a small
real part below cutoff (blue) and a small imaginary part

above cutoff (green).
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Fig. 10, impedance chart for 68 open holes
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Fig. 11, Setup for pressure and flow measurement

indicated for comparison (red). There are more resonances in
the range above 5 kHz, also including a negative imaginary
part. This is not considered further here.

Now to get an idea of the pressure and flow in the tube, the
impedance sensor is replaced by a sine voltage source (Fig.
11). The frequency of the peak (1093 Hz) is chosen for the
experiment and the voltage is set to 1V (1Pa). The result
(Fig. 12 and Fig. 13) is not a simple standing wave, but a
combination of a standing wave and a travelling wave. For a
pure standing wave, the imaginary part of the pressure
would be zero along the whole tube.

Voltages at point®x (x=0 ... 136) correspond to pressure
values (Pa), voltages at poirfix (x=0 ... 136) to volume
flow (m®/s). PointPO (FO) would be the mouthpiece tip of a
woodwind instrumentP136 (F136) the end of the bell. The
open holes are at the positioRx with x being an odd
number (1 to 135).
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Fig. 13, Magnitude of pressure and flow along the tube with 68 open side holes, logarithmic scale

5. CONCLUSION

In this article some simple structures of tone-hole lattices
were aalysed showing the suitability of an electronic circuit
analysis program to study acoustical questions concerning
musical wind instruments. It can be seen that there is good
agreement with theory and experiments in the relevant
literature. This opens the way to study many other questions.
This could be the impedance, pressure and flow properties of
wind instruments with irregularly placed tone-holes (which
is the normal case). There also exist macros for conical
tubes, tubes with rectangular cross section, etc., developed
by the second author. Thus also conical instruments, such as
oboes, bassoons and saxophones could be studied.

The user interface and the circuit diagrams are very intuitive,
so the use of this kind of software simulation is also valuable
for teaching and studying. There exists more literature

treating the cutoff frequency and the side hole, e.g. [5], [6],

[7] and [8] that could be used for a cross check. But most
important is the fact that real instruments could be analysed,
based on the geometrical dimensions of the bore and the
holes.

The method of raising the shear viscosity to cope for losses
that are not known in detail could be improved by looking
into the cause of the losses (turbulence, porosity, friction,
radiation, etc.) and trying to model these parameters
effectively.

A very ambitious aim would be to try to include nonlinear
effects and/or two-dimensional simulations. This would
mean developing new, probably rather complicated macros.
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6. APPENDIX 1

Here it is described how to express the characteristic
impedarce Z. from Moers and Kergomard [4] in a form
similar to that which Benade used in [1].

First the matrix elemen® andC [4] are divided by j. Then
the variablesy, Z, k are replaced by (=2xf), p (density of
air), ¢ (speed of soundy (tube radius)b (hole radius) antl,
(effective hole depth). For the length of the tube elemgnts
is used as Benade did in [1]. All necessary formulae for

these replacements can be found on page 986 and 987 of [4].

This givesB/j andC/j in the form of

BJj = LS [2sin (wsfc) cos (wsfe) + (bfa)* (c/(wte)) cos® (wsfe)]  (4)

2
Ta*

7r(12 b
Clj= e [2 sin (ws/c) cos (wsfc) - (b/a)? (c/(wte)) cos? (wsfe)]  (5)

ThereforeZc =1/Ycbecomes

2 sin (ws/c) cos (wsfc) + (I)/a)2 (¢/(wte)) cos® (wsfc)

B pec
Z = \/j: : [ = 6
C  ma? [ 2sin(ws/c) cos (ws/c) - (bfa)® (c/(wte)) cos® (ws]c) ©

Now reducing the fraction by

2 sin (wsfc) cos (ws/c) (7)

givesZ; in a similar form as th&,;in (8) of [1].

(pe\ 1+ 30 (cf(wte)) tan(ws/e) | '?

= (7) ( 1= L(b/a)® (c/(wte)) cot(wse) )

®)

Comparing the two equations f@ and Z, (8), one finds
that orly the termcot(wtJ/c) in (8) is replaced bg/(wte).

Renark: Benade useZ; for “Z for tubes withclosedholes”
andZz, for “Z for tubes withopenhdes”, whereas in [4F.
stands for “characteristic impedance”.

These wo functions are very similar for frequencies where
A4 is much bigger thar.. This isvalid for the cutoff
frequerty of 1140 Hz and. being aboutl5mm Berade
evidently treated the side-hole as a tube, whereas Moers
simplified the model to a rigid mass in the side hole. The
latter method is sufficient for many applications and runs
faster on a computer. Fig. 14 shows the curve shapes of the
two different equations faf,, Z, and the real and imaginary
parts hereof.

T'c Benade 1960-T123

side=hole a5 a wave

rd
1123,9buMEL

0 500 1,000

Re(Zo_Benade)

1,500 2,000

YModel with aiF in th

_side=hole just as a_

(Im(Zc Moers))

(Im(Zo Benade))
Ftest (Hz)

Fig. 14, comparison df, side hole as a tube and only mass
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7. APPENDIX 2

Here we describe the model (macro) for the lossy tube.
There ae two versions of the macro. One simple, for almost
plane waves in tubes where Bessel functions are not needed.
This is only valid for frequencies very much higher than
fo=64*visc/(pi*rho*diam”"2, cylindrical tube). The second
model is also applicable for low frequencies (small
diameters). It is based on Bessel functions and takes into
account the friction on the walls of the tube. Simulation with
the latter can be time consuming. The diameters used in the
simulation (a_Benade = 15 mm, b_Benade = 3.35mm
require only the simple model, so this is described here in
detail.

The physical quantities used for the simulations are:
Standard temperature: Celsius_standard = 23 °C
Speed of sound: speed = 346.217 m/s

Standard pressure: Patmos= 101.325 Pa

Densiy of air (1% argon): rho = 1.186 kg/m"3

Shear viscosity: visc = 18.6*10"-6 kg/m/s
Dimensionless loss factor: loss = 4.8

Specific heat ratio (fc,): kappa = 1.40267
Prandtinumber: prandtl = 0.719551

The diameter of the cylindrical tube with circular cross
section is “diam” and its length is named “length”. The
frequency in Hz is called “F". The circuit diagram of the
macro is shown in Fig. 15. It includes the elements of the
hybrid matrix shown in Fig. 16, together with the
transmission matrix elements that are calculated from the
propagation constant gamma and the characteristic
impedance zwl1.

imag(H11)/(2xpixF) 1/(imag(H22)%(2%pi*F)) 0

a—%—‘/\’\’ =000 |« . t
1 real(H11) E}) H12
’_O? L L rearon) ¥

current controlled voltage controlled
oltage source voltage source

voltage controlled

H21 voltage controlled
Caution: there is no 5 voltage source current source

implicit end correction J:

Fig. 15, circuit diagram of the lossy tube macro

Chain matrix lossy
.define A11 (cosh(gammaxlength))
.define A21 ((1/zwi1)k(sinh(gammasklength)))

.define A12 (zwl1*(sinh(gammaxlength)))
.define A22 (cosh(gammaxlength))

H matrix lossy
.define H11 (A12/A22)
_define H21 (1/A22)

.define H12 (1/A22)
.define H22 (-A21/A22)

Fig. 16, Definition of the matrix elements
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In Fig. 17 and Fig. 18 the definitions for gamma and zwl1
are shown in the form as they are used in the Circuit
Analysis Program.

define garmma
pF2*pi*F /spead*
(1 *2E'°j*(kappa*1 1
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Fig. 17, Definition of gamma
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Fig. 18, Definition of zwll
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