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ABSTRACT

Tanpura string vibrations have been investigated previously us-
ing numerical models based on energy conserving schemes de-
rived from a Hamiltonian description in one-dimensional form.
Such time-domain models have the property that, for the loss-
less case, the numerical Hamiltonian (representing total energy
of the system) can be proven to be constant from one time step
to the next, irrespective of any of the system parameters; in
practice the Hamiltonian can be shown to be conserved within
machine precision. Models of this kind can reproduce a jvari
effect, which results from the bridge-string interaction.

However the one-dimensional formulation has recently been
shown to fail to replicate the jvaris strong dependence on the
thread placement. As a first step towards simulations which ac-
curately emulate this sensitivity to the thread placement, a two-
dimensional model is proposed, incorporating coupling of con-
trollable level between the two string polarisations at the string
termination opposite from the barrier. In addition, a friction
force acting when the string slides across the bridge in hori-
zontal direction is introduced, thus effecting a further damping
mechanism.

In this preliminary study, the string is terminated at the posi-
tion of the thread. As in the one-dimensional model, an implicit
scheme has to be used to solve the system, employing Newtons
method to calculate the updated positions and momentums of
each string segment.

The two-dimensional model is proven to be energy conserv-
ing when the loss parameters are set to zero, irrespective of the
coupling constant. Both frequency-dependent and independent
losses are then added to the string, so that the model can be
compared to analogous instruments. The influence of coupling
and the bridge friction are investigated.

1. INTRODUCTION

The tanpura is a traditional Indian stringed drone instrument
which exhibits an interesting tonal characteristic known as the
”jvari”’. Raman[1] theorised that the jvari (which consists of
a descending formant of sustained high frequencies) also ex-
hibited by the veena and sitar is a result of the curved bridge
of these instruments. Investigation into the jvari has also been
carried out by Bertrand[2] and Valette[3]. Bertrand conducted
experiments using compression sensitive equipment to measure
the displacement of a string vibrating against a curved barrier
and was able to produce graphs showing the time varying for-
mant phenomenon. Valette was able to predict the Helmholtz
motion of the string and the precursor effect on the nut force
signal due to the barrier. Despite the fact that this work has
been done, a computer model which can fully simulate the be-
haviour of the real instrument is yet to be made, this indicates
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that the jvari is not yet fully understood. Current models can
produce jvari like behaviour but do not capture the strong de-
pendence of the jvari on the thread presence and placement in
the tanpura. To be able to explain the jvari better more physical
effects will have to be considered when attempting to describe
the tanpura. This paper deals with trying to implement some
previously unconsidered effects into an existing model.

When the strings are able to collide with the rigid barrier
a non-linear effect is introduced. This non-linear contact effect
can lead to non-physical energy jumps if the traditional Newto-
nian equations are used as the basis for numerical models with-
out suitable precautions being taken [4]. These energy jumps
can lead to a build up of energy which gives an unstable model.
Methods which can be used to deal with this problem include
energy methods and symplectic schemes. Energy preserving
methods aim to conserve an energy like quantity, depending on
the starting point of the model this can either lead to conserv-
ing the discrete time analogue to the total energy (Hamiltonian)
[5] or an energy like quantity which does not exactly equal the
true energy [6, 7]. Symplectic methods [8, 9] are ones in which
the sum of all of the exterior products of the differential steps
of the matched pairs of position and momentum is conserved
as the system evolves over time. The already existing model
which uses the Hamiltonian of the system as a basis to ensure
energy conservation [10] will be briefly discussed. After this the
method of expanding the model to have two oscillation planes
and coupling will be detailed followed by a discussion of trans-
verse bridge friction.

2. METHODOLOGY

An energy conserving method which preserves the Hamilto-
nian of the system is utilised beginning with a lossless, stiff
string[11] vibrating in one dimension transverse to the string
with simply supported boundary conditions. The string’s dy-
namics can be described in the Newtonian manner:
2 2 4

pA%Y =r TV BITY k-] )
In this equation y is the displacement of the string, z is the dis-
tance along the string and y. is the bridge profile as a function
of z. k. is the stiffness of the barrier, E'1 is the Young’s mod-
ulus of the string material, « is a coefficient which defines the
exponent of the force equation for the bridge repulsion, A is the
cross sectional area of the string and p is the mass density of
the string. The term | (y. — y)® | indicates that this term is zero
when the string is not in contact with the barrier and has the
value calculated when the string is touching the barrier. This
term will always be non-negative as when the string is touching
the barrier y. — y > 0. When converted to the Hamiltonian
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form and discretised this gives (for a fuller description of the
derivation refer to [10]):

H" =c1[(¢") ' (¢") + ") Dy™) +¢1 [(ye—y™)* ] @)

The discretisation here involves breaking the string up into M
segments. H'™ is the Hamiltonian over a spatial step at time
step n, g™ is the scaled momentum vector at time step n of size
M — 1, y" is the displacement vector of size M — 1 at time
step n, all y and q are at the same time step in (2), D is the spa-
tial differentiation matrix which takes into account terms due to
stiffness and tension, c¢; and ¢ are constants created by combin-
ing other constants. The vectors for momentum and position
are of length M — 1 because the last point M is fixed by the
boundary conditions and it is therefore never updated.

2pAAx
=15 3
and )
kAt
¢= 2pA(a + 1) @

where Ax is a discretised spatial step and At is the times be-
tween samples. (2) can be rewritten as:

H" = Az (py;)pffn) + 2ATx2 (Dry™) (D1(y™)+

ke
a+1

ET

oAzt P2 (D2(y™) +

1 (ye —y™)
(5)

so that the terms of the D matrix can be more easily interpreted.
D represents spatially differentiating once and Do twice. It
can be shown[10] that the Hamiltonian is the same over two
time steps, this proves that this method is energy conserving.
Using Hamilton’s equations of motion a scheme for finding the
dynamics of the string can be constructed. After some rear-
ranging and redefining (which can be looked up in [10]) the
equation:

F=(I+D)s+2Dy" —q")+ (s ([(ye —y" — )
—[(ge —y™)* ) =0
(6)

can be constructed where

s = yn+l _ yn _ qn+l 4 qn (7)

and [ is the identity matrix. By using a Newton Raphson solver[12,

13] to converge on a value for s which solves (6) the momen-
tum and position for each string element at the next time step
can be determined. Losses are introduced by discretising their
force equations and then adding them in to (6) to give:

F=[(1+ VTM)I +(1+ %)D}s +2(Dy" —q")+
s (Lye —y" =) = Lye —y")* ) =0

The combined continuous domain loss equations are defined as:

®)

Oy Oy Ay

91022 91921 ~ PN % ©)

These losses are resistive and Kelvin-Voigt terms which come
from vibration and moving through a fluid, n and ~ roughly
define the friction inside the string and the string going through
the air. (8) is solved in the exact same way as (6) to give the

F =n(r
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Figure 1: Spectrogram of the nut force in the y direction.

update equation taking into account losses. Fj cannot cause the
model to become unstable as when it is added in % < 0[10].

Figure 1 shows a spectrogram of the nut force in the one
dimensional model, the jvari is characterised by the high fre-
quency formant whose spectral centroid changes over time. This
has the form of an intial drop in frequency followed by a plateau
and then another drop. The initial condition that lead to this
spectrogram was the string being set in a triangular shape with
its maximum half way along the string. All simulations dis-
cussed in this paper were run with this initial condition. The
constants used in the model to generate Figure 1 were; string
length of 0.628m, mass per unit length of 5.5842x 10~ *Kg/m,
tension of 31.4675N, stiffness of 8.3498 x 10~°Pam?, fre-
quency independent damping coefficient of 0.1, frequency de-
pendent damping coefficient of 1 x 10, sampling frequency
of 4 x 44100Hz and 200 string segments.

3. EXPANSION TO TWO DIMENSIONS AND
INTRODUCING COUPLING

When a string is plucked it is rare that it will be plucked in a
manner which excites it along only one of the axis as shown
in Figure 2. Even if the string was plucked in such a man-
ner there would still be energy transferred between oscillations
along each axes as the bridge and nut in a real instrument do
not hold the string perfectly steady and slight asymmetries in
these parts will give a transfer of energy. This can be observed
on a string instrument through simple observation by plucking
a string and seeing the ”whirling” which takes place (whirling
referring to the tendency of the string to move in a spiralling
motion around the z axis as shown in Figure 2). As can be
seen in Figure 2 the string will move across the bridge when
whirling, this introduces a frictional force in the x direction.

To add nut coupling into a tanpura model first the model
must be generalised so that the string can vibrate in the two di-
rections. In the absence of coupling a string vibrating in two di-
mensions can be considered to be two separate strings as no en-
ergy can be transferred between them. This means that energy
conservation (within machine precision) in the lossless case is
assured as both strings conserve energy and are separate sys-
tems. As the two strings are representing two planes of oscilla-
tion of the same string they have the same physical parameters
associated with them and are chosen to have the same number of
string segments to keep the formulation of the new model sim-
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Figure 2: Diagram of the extended model. The triangles rep-
resent the points at which the string is terminated, the cylinder
section the bridge and the blue line the string.

ple. The extension to two polarisations can be achieved simply
though scaling up the vectors and matrices to include the other
string. In (5) y™ will be replaced by:

n_ [(x"
Tt = <yn) (10

where 2™ and y™ are the vectors of length M — 1 containing all
of the & and y positions of the string segments at time step n.

p" is replaced by:
n_ (pa"
= (P=, 11
P <py ) an

where p,™ and p," are the vectors of length M — 1 contain-
ing all of the p, and p, values of the string segments at time
step n. For the two dimensional string the second derivative
approximation matrix is:

_ D271 0
Dyo = ( K D2,1> (12)

where O represents a M — 1 X M — 1 matrix of zeros and
D> ;1 is the one dimensional spatial derivative matrix of the size
M—-1xM-1:

—2 1 0 - -~ 0
1 -2 1
0 e
Doy=| (13)
. T T t. 0
: 1 -2 1
0O -~ 0 0 1 -2

Using these equations in the relevant places (8) can again be
used to approximate the dynamics of the system in exactly the
same way as in the one dimensional case, having the effect
of solving two completely strings at the same time. The bar-
rier force now has additional zeros corresponding to the entire
length of the x position vector in the relevant place as the string
will not experience the repulsive barrier force in this direction.
Now the update equations read:

where

Sa
s= (Sy> (16)

To introduce coupling a simple approach was adopted, the
forces acting on the unfixed points closest to the nut on each
string vibration axis were chosen to depend upon spatial gradi-
ents at the position of the other. There are other methods for in-
troducing coupling such as that used by Pate[14] in the context
of electric guitars. (17) shows how the second spatial derivative
matrix, Ds 2, is altered with this in mind.

|
Dop=|—- - — + — - = (17)
|

| Doy

The entries in the matrix at the points (2M — 2, M — 1) and
(M — 1,2M — 2) have the value 6 which has the effect of
enabling the transfer of energy between the strings, this can be
more clearly seen by looking at the explicit equations for the
second derivative approximations at these points (all y,, are at
the same time point).

dPym—1 _ ym—2 = 2yn—1 + Oyan 1
de? Az?

(18)
and

d2y2(1\471) - Ye(m—1)—1 — 2ya(m—1) + Oyar—1
dx? - Azx?

19)

When 6 = 1 these equations are functionally the same as con-
sidering the system as one string. In the context of this model
this results in all energy being completely transferred to the
other string at the nut end point (this was also observed through
testing the model). When 6 = 0 the strings are uncoupled and
are two separate systems with no transfer of energy possible.
Between 0 and 1 some energy will be transferred between the
strings which is effectively coupling. 6 can also lie between
—1 and 0, as a wave would pass through the negative twice to
return to the string where it originated the negative will cancel
out. The sign of # can be observed in the direction which the
coupling force pushes the other string along its displacement
axis.

When coupling is added the lossless model can be proven to
still be energy conserving within machine precision in an identi-
cal way to that shown by Chatziioannou and van Walstijn[10] so
long as the matrix D remains symmetric. With § = 0 the spec-
trogram of the nut force in the y direction would be identical to
that shown in Figure 1, Figure 3 shows the spectrogram with the
coupling included. Figure 3 was simulated using identical pa-
rameters (except for the introduction of the second dimension
and coupling) as the simulation which generated Figure 1. A
value for 6 of 0.1 was assumed and used throughout, this value
was chosen as it fell within the required limits and gave notice-
able effects. When Figures 1 and 3 are compared some subtle

Pt =g g (14) differences can be observed between the spectrograms, Figure
3 has a less steep drop off at the end of the jvari and the higher
and frequency content above the jvari varies over time in a different
Tt =s—¢" (15) manner between the two.
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Figure 3: Spectrogram of the nut force in the y direction with
coupling present.

4. BRIDGE FRICTION

4.1. Defining the tangential bridge friction and incorporat-
ing it into the model

When the string moves across the bridge in the x direction it
will experience a frictional force. The form used for the kinetic
friction coefficient that defines this force is a modified version
of that detailed by Desvages[15], with the sticking component
removed as sticking was assumed not to occur in the system
being considered. This leaves the kinetic friction coefficient
being defined as:

u(v) = c1 arctan(cav) (20)

where v is the relative velocity between the objects moving
across each other, ¢; and co are constants which characterise
the interaction between the two materials sliding across each
other. The force equation which is used in the model is:

Fror = — n/l('Ux) (21)

The normal force, Fy,, is the opposite of the bridge force so (20)
can be rewritten in a discretised form as:

Fyoe = _Csx_l(t(yc —y" - Sy)CH—lJ

2
e — ) e axctan(esva(ss))

The barrier friction term is added into the formulation in the
same way as the other losses. The contribution of Fi¢ to F'
depends on both s, because of the tangential velocity term and
sy from the barrier force term.

4.2. Finding the values of c; and c»

To include the bridge friction an experiment had to be carried
out to find the values of the constants in the definition of the
kinetic friction as suitable data for the required materials could
not be found. The experiment was carried out by allowing a
tanpura bridge to slide down the three unwound strings on a
guitar and taking a video of this. Unwound guitar strings were
chosen as they are the most similar to tanpura string. The video
was then analysed to find the velocity of the bridge over time,
as the camera was only capable of taking videos at 30fps and
the bridge moved quite fast there was a high uncertainty in the
bridge position. Because of this uncertainty in the velocity the
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Figure 4: Graph showing the fitted atan curve (blue line)to the
data gained from the experiment (black dots) detailed in section
3.3. The R-square value of the fit is 0.9913 indicating a good
match.

terminal velocity of the bridge was judged to be a more accu-
rate measure than the velocity at each time point as it could be
calculated over multiple time points. When the position against
time plot became straight the linear section was fitted with a
straight line and the gradient of this was taken to be the termi-
nal velocity. Each iteration of the experiment gave a data point
which consisted of a terminal velocity and the normal force.
The equation which governs the bridge sliding down the guitar
neck is:

Fy — p(v)F = ma (23)
where Fj is the gravitational force acting on the tanpura bridge,
F, is the normal force, m is the mass of the tanpura bridge and
a is the acceleration of the tanpura bridge.

The normal force can be re-expressed as:

F, = Fycos(¢) (24)

where ¢ is the angle that the guitar neck is held at compared
to the horizontal axis. At terminal velocity a = 0 and so the
equation for u(v) can be rewritten as:

1
cos(9)

This allows the kinetic friction coefficient to be fitted by com-
bining (19) and (24) into

p(v) = (25)

1
cos(9)

Using the angles and velocities measured as well as by noting
that an additional point can be added at (0,0) because there is
no kinetic friction at zero velocity the data can be fitted to an
arctan function using MATLAB’s cftool, this is shown in Fig-
ure 4. The coefficients were determined to be ¢; = 0.39 and
co = 2.84. These result are reasonable (for most smooth mate-
rials the kinetic friction coefficient limit is between 0.3 and 0.7)
but due to the rough nature of the experiment are estimates.

Figure 5 shows the spectrogram of the simulation run with
the same parameter values as in Figure 3, apart from the addi-
tion of the barrier friction. It can be seen that the bridge friction
has an effect on the shape of the simulated jvari, the second drop
in the spectral centroid frequency is steeper in Figure 3.

c1 arctan(cav) = (26)
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Figure 5: Simulation run with barrier friction.

5. EXAMINING THE SPECTROGRAMS OF
SIMULATIONS WITH VARIED BRIDGE-THREAD
DISTANCE

Spectrograms of the force in the y direction at the nut were
taken to observe the jvari with different bridge centre positions.
These simulations were run with the same parameters as the
ones that were used to generate the other figures in this report.

It can be seen from Figure 6 that varying the bridge po-
sition has a significant effect on the shape of the jvari in the
model. Changing the bridge position is analogous to varying the
thread position in a real tanpura . Both involve the distance be-
tween the thread and the bridge maximum varying. Some gen-
eral trends can be observed from the spectrograms, as the dis-
tance between the thread and the bridge is increased the plateau
of the jvari is shortened and the central frequency of the plateau
is increased. As the distance is increased the the steepness of
the initial and final drops in the frequency of the jvari also in-
crease. It can be qualitatively observed that the jvari is highly
dependant on thread position in a real tanpura but experiments
would have to be carried out to check whether the model cor-
rectly predicts how the jvari varies.

6. CONCLUSIONS AND FUTURE WORK

In this paper it has been shown that already existing models of
the tanpura can be expanded to contain two polarisations of os-
cillation with coupling between them and that this new model
retains the characteristic of being energy conserving to within
machine precision in the lossless case. Bridge friction was also
added to the model and rough estimates for necessary parame-
ters were found by experiment. Both adding friction and cou-
pling were shown to have an impact on the shape of the jvari
but experiments will have to be carried out to ascertain a bet-
ter value for 6 and to check to see whether the coupling is fre-
quency dependant. If the coupling is found to be frequency de-
pendent then the model will have to be altered as the coupling
included here is frequency independent.
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Figure 6: Spectrograms of simulated plucks with different bridge positions
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