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ABSTRACT
WaveCore is a scalable many-core processor technology. This
technology is specifically developed and optimized for real-time
acoustical modeling applications. The programmable WaveCore
soft-core processor is silicon-technology independent and hence
can be targeted to ASIC or FPGA technologies. The WaveCore
programming methodology is based on dataflow principles and
the abstraction level of the programming language is close to
the mathematical structure of for instance finite difference time-
domain schemes. The instruction set of the processor inherently
supports delay-lines and data-flow graph constructs. Hence,
the processor technology is well suitable to capture both dig-
ital waveguide as well as finite-difference oriented algorithm
descriptions. We have analysed the feasibility of mapping 1D
and 2D finite-difference models onto this processor technology,
where we took Matlab reference code as a starting point. We an-
alyzed the scalability and mapping characteristics of such mod-
els on the WaveCore architecture. Furthermore we investigated
the composability of such models, which is an important prop-
erty to enable the creation and mapping of complete musical
instrument models. One part of the composability analysis has
been to combine digital waveguide (FDN reverberation model)
with finite-difference time-domain models (primitive six-string
instrument model). The mapping experiments show a high effi-
ciency in terms of FPGA utilization, combined with a program-
ming methodology that matches in a transparent way with the
mathematical abstraction level of the application domain. We
used a standard FPGA board to get full-circle confidence of the
carried-out analysis. The WaveCore compiler and simulator re-
sults have shown the scalability of the processor technology to
support large models.

1. INTRODUCTION

The development of sound synthesis digitization is to a large
extend relying on the availability of computational power and
hence indirectly linked to the progress of Moore’s law. Sound
synthesis itself is built upon a production model. The nature
of such a model can be abstract and hence based on the pro-
duction of the desired sound itself (e.g. Digital Waveguide or
wavetable techniques) or based on a model that physically rep-
resents the object that produces sounds such as Finite Differ-
ence Time Domain (FDTD). A historical overview and elabo-
rate explanation of these techniques can be found in [1], [2],
and [3]. Mapping of FDTD based physical models on proces-
sors is challenging because of the huge computational require-
ment. Despite the impressive evolution of general purpose pro-
cessors which are multi-core nowadays and widely applied in
mainstream computer platforms, these processors can still not
meet the computational requirements for solving FDTD models

within reasonable timespans, let alone real-time. As a result,
the focus is on different processor technologies, like GPGPU
(General-Purpose computing on Graphics Processing Units) [4]
and FPGA (Field Programmable Gate Array). Solutions based
on GPGPU can achieve impressive accelleration and offer flex-
ibility because of the programming versatility. Feasibility of
real-time simulation of physical models on GPGPU has been in-
vestigated by Hsu et. al. [5]. They have been able to map square
shaped 2D membrane structures with grid sizes up to 81x81
points onto a GPGPU at 41.1 kHz real-time, and compared this
against GPP performance. FPGA’s enable parallel computing
to the extreme and have the potention to meet the real-time
computational requirements. The difficulty with FPGA’s, how-
ever, is programmability. In principle an FPGA is a fabric of
primitive logic gates and memory resources that can be config-
ured (interconnected) in an almost arbitrary way. This implies
that an FPGA ”programmer” has to develop a processor soft-
core that is subsequently mapped on the FPGA fabric. Such a
soft-core often results in an ultimately efficient solution to the
given application problem, but often lacks flexibility. Motuk
et. al. [6],[7] designed FPGA-targeted soft-cores for solving
plate equations and obtained impressive efficiency results with
this. Using these soft-cores, however, makes it still not trivial
to compose a complete instrument model. Pfeifle et. al. has to
our knowledge been the first to design FPGA targeted soft-cores
that implement complete instrument models, based on the com-
position of different FDTD models [8]. Our conclusion is that
FPGA technology has the ability to implement computational
intensive real-time physical models of musical instruments, but
the problem is to make this technology sufficiently flexible (i.e.
to design soft-cores that enable efficient and versatile model de-
velopment) and accessible (i.e. without the steep learning curve
to apply this technology).

2. SCOPE AND CONTRIBUTION

We focus on the application of FPGA technology for real-time
musical instrument modeling in a broad sense. Our special in-
terest is FDTD, but we also take into account that other tech-
niques, like digital waveguide or ”classical” analog electron-
ics modeling should also be feasible. Our research object is
WaveCore. This is a programmable soft-core processor technol-
ogy that is specifically designed for audio and acoustics. Ear-
lier work has showed that WaveCore can be applied efficiently
for low-latency audio effects processing [9], applying digital
waveguide and classical modeling techniques. In this paper
we investigate the feasibility of applying the WaveCore tech-
nology to real-time physical modeling on FPGA. Our aim is to
apply this technology to model complete musical instruments
with good efficiency and to hide those technological aspects for
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the developer that make FPGA difficult to use. The structure
of this paper is as follows: we start with an introduction to the
WaveCore processor. Then we explain how FDTD schemes can
be mapped on WaveCore technology. Further we explain how
different FDTD schemes (and possibly other algorithmic parts)
can be composed into a larger scope, and conclude with a tech-
nology efficiency analysis.

3. DATA-FLOW MODEL AND RELATED PROCESSOR
ARCHITECTURE

WaveCore is a many-core processor concept. This processor is
a so-called soft-core, which means that the processor design is
implemented as a hardware description in a Hardware Descrip-
tion Language (HDL). This HDL code can be targeted (synthe-
sized) to silicon which can be either ASIC (Application Specific
Integrated Circuit) or FPGA (Field Programmable Gate Array)
technology. After targeting this softcore to the desired tech-
nology, the WaveCore processor behaves like a programmable
Digital Signal Processor (DSP) chip. The WaveCore proces-
sor is programmable with a native language that is inspired by
data-flow concepts. This WaveCore programming language is
declarative. This means that a WaveCore program describes a
function, and hides details about how this function should be ex-
ecuted which is the case in imperative programming languages
like C or C++. A WaveCore program is a data-flow process
graph: a network of processes, edges and a global scheduler.
Each WaveCore Process (WP) is an entity that is periodically
executed (i.e. ”fired”) by a global scheduler. Upon firing a pro-
cess consumes one data-entity, called ”token” from each con-
nected ”inbound-edge”. Likewise, after process execution a
process produces one token per associated ”outbound-edge”.
A token consists of one or more ”primitive token-elements”
(PTE). Where one PTE is the atomic native 32-bit data element.
A WP can have an arbitrary number of inbound and outbound
edges (including zero). Each WP can have a different link to
the global scheduler. This scheduler orchestrates the execu-
tion of the entire process graph by periodically generating ”fire-
events” to the linked processes through dedicated ”fire-links”.
In the example process-graph in fig.1 there are two different
fire-links, called Es1 and Es2. This implies that different WP’s
can be fired with different rates: a multi-rate process graph is
therefore supported by the concept. A global scheduler con-
cept leads to a very strict and predictable execution behaviour
of the process-graph, provided that the execution time of the
actors is predictable. A WaveCore process is allowed to be par-

WP1 WPP2
E1

E2

E3

E4

E2

WPP1.a

WPP1.b

Scheduler
Es1

Es2

Figure 1: Data-flow oriented WaveCore programming model.

titioned. Such a partition is called a WaveCore Process Parti-
tion (WPP). As can be seen in fig.1, an inbound or outbound
edge can be divided and linked to different WPP’s. Hence it

is possible that multiple WPP’s can contribute to the produc-
tion/consumption of a single token. At the lowest level we de-
fine the ”Primitive Actor” (PA). A PA is an indivisible process
which is depicted in fig.2. As can be seen a PA has two inbound
edges: x1, x2, a function f , one outbound edge y, a parameter
p, a max-length delay Λ and an inbound edge τ which controls
the actual delay-line length dynamically. Each PA consumes at
most two PTE’s, and produces one PTE upon execution of that
particular PA. The production of a PTE can be delayed through
a run-time controllable delay-line that is associated with each
PA. The delay-line length Λ is specified at compile-time and
can be run-time modulated with a third inbound signal, called τ ,
yielding a dynamically variable delay-length λn+1 = Λ.g(τn).
Hence is is possible to describe algorithms with time-varying
delays (like flanging [9]) in a compact and efficient way. The
maximum delay-length Λ is specified at compile-time and can
have any arbitrary positive integer value including zero. A lim-

f(x1,x2,p)f(x1,x2,p)

x1[n]

x2[n] DelayLineDelayLine

p f L t[n]

L

y[n+l]

l

Figure 2: Primitive Actor (PA) model.

ited set of different PA functions are supported by means of the
already mentioned function f (like addition, multiplication, di-
vision, etc.). The PA function types that are of importance in
this paper are (1) C-type PA: yn+1 = p, (2) MAD-type PA:
yn+λ = p.xn1 + xn2 , (3) ADD-type PA: yn+λ = xn1 + xn2
(4) MUL-type PA: yn+λ = xn1 .x

n
2 , and (5) AMP-type PA:

yn+λ = p.xn1 . The C-type PA is insensitive to its x1 and x2 in-
bound edges and basically emits a programmable constant value
to its outbound edge, each time that it is fired. This C-type PA
can be linked to a token-element and hence to an inbound port
or local WPP-input. Each PA can be programmed such that it
emits it output PTE to an outbound port, or a partition output,
or locally to a fellow-PA within the same WPP.

3.1. WaveCore processor architecture

The WaveCore processor itself consists of a cluster of so-called
”Processing Units” (PU). A block diagram of this cluster is de-
picted in fig.3. Each PU embodies a small Reduced Instruc-
tion Set Computer (RISC). This PU-cluster is interconnected be
means of a Network-on-Chip (NoC), called Graph Partitioning
Network (GPN). The PU-cluster can be intialized (i.e. loading
compiled WaveCore program code) through the ”Host-Processor
Interface” (HPI). This HPI is intended to be connected to a host-
computer that can either be on the same chip (FPGA or ASIC)
or an externally connected computer. The execution of the indi-
vidual PU’s within the PU-cluster is orchestrated by the Sched-
uler. In principle this Scheduler is a programmable sequencer
which generates firing events to each individual PU, accord-
ing to a compile-time derived cyclo-static schedule. Each PU
is capable to access system memory space through the ”Ex-
ternal Memory Interface”. Hence, each PU is individually re-
sponsible for moving token data and delay-line data from/to ex-
ternal memory. The WaveCore compiler (which is not further
described in this paper) takes care of automated mapping of a
WaveCore Process Graph onto the PU-cluster. Like mentioned
each WP in the process graph can be partitioned into one or
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Figure 3: WaveCore processor: PU-cluster.

more WPP’s. Each WPP is entirely mapped on a PU. It is sup-
ported that one WP is eventually mapped on a set of PU’s. This
property is used by mapping a finite-difference scheme, as we
will explain further in this paper. The connections between the
different WPP’s are automatically mapped on the GPN network
by the compiler.

3.2. Processing Unit architecture

Like mentioned, a PU embodies a small pipelined RISC proces-
sor. The block diagram of a PU is depicted in fig.4. This unit
consists of two main parts: the ”Graph Iteration Unit” (GIU)
and the ”Load/Store Unit” (LSU). The GIU is a small pipelined
CPU which is fully optimized to sequentially fire PA’s accord-
ing to a compile-time derived static schedule. The instruction
set for this CPU is defined in such a way that a compiled PA
can be executed as a single instruction. This unit fires an en-
tire WPP after that it receives a process-dispatch event from
the global scheduler (through a fire-link), and hence executes
each compiled PA within this WPP sequentially. The heart of
the GIU is a single-precision (32-bits) floating-point ALU. The
LSU takes care of external memory traffic. As such, the GIU is
decoupled from external memory and hence insensitive to the
associated latency.

iMemiMem

GIUGIU

Processing Unit

cMemcMem

xMemxMem

yMemyMem

GPNGPN

Ext. Mem

GPN

HPI

Dispatch

LSULSU

Figure 4: Processing Unit (PU).

4. DESCRIBING PHYSICAL GEOMETRIES IN
WAVECORE PROCESSES

In this section we zoom in into the discretization of Partial Dif-
ferential Equations (PDE) that are of importance for Finite-Difference
(FD) modeling [2]. Next, we will analyze and explain how such
a scalable and discrete model is translated to a WaveCore pro-
cess.

4.1. Finite difference schemes of wave equations

We focus on finite difference schemes that originate from the
generic wave equation as defined in (1). This equation models
wave propagation in a medium, like a string (1-dimensional),
plate (2-dimensional) or a 3D medium.

λ(s).∇ku(s, t) = ε(s)
∂2u(s, t)

∂t2
+µ(s)

∂u(s, t)

∂t
+f(s, t) (1)

Where s represents the spatial coordinates (i.e. < x > for a
1-dimensional geometry or < x, y > for a 2-dimensional ge-
ometry). The parameter k represents the order of the differen-
tial equation. The first-order partial time derivative term models
wave propagation losses. The term f(s, t) enables model stim-
ulation (e.g. plucking a string or striking a snare-drum). In our
analysis we will investigate 2nd and 4th PDE orders. We allow
the parameters λ, ε and µ to be dependent on the spatial coor-
dinates in our analysis. However, we assume these parameters
to be time invariant. Physically this means that non-uniformity
of the medium is possible. The first step is to transform the
space/time continuous eq.(1) into its space/time discrete coun-
terpart. Therefore we introduce a grid in space: s = σ∆s,
and time: t = n∆t. Furthermore we apply a central difference
approximation which yields the following substitutions for the
first and second partial time derivative:

∂u

∂t
≈ un−1

σ + un+1
σ

2∆t
(2)

∂2u

∂t2
≈ un−1

σ − 2unσ + un+1
σ

∆t2
(3)

We substitute (2) and (3) into (1) and subsequently solve for
un+1
σ . This yields the iteration function, as defined in (4)

un+1
σ = s1(σ)ξn(σ)+p1(σ)unσ+p2(σ)un−1

σ +p3(σ)fnσ (4)

Where we define ξn(σ) as the spatial stencil computation func-
tion. This function accumulates the neighborhood node values,
including centered node unσ with discrete timestamp n. The def-
inition of this spatial stencil depends on the dimensions of the
models and the order of the differential equation. The general
definition is given in equation (5).

ξn(σ) =
∑
k

αk.u
n
σk (5)

For a 2D geometry with 2nd order (membrane) we can expand
this stencil computation function as follows:

ξn(i, j) = uni−1,j + uni+1,j − 4uni,j + uni,j−1 + uni,j+1 (6)

An illustration of a 2D node scheme with the stencil defined in
(6) is given in fig.5.
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Figure 6: Node computation scheme
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Figure 5: 5-points stencil within membrane model

4.2. Capturing finite-difference schemes into WaveCore pro-
cesses

A finite-difference scheme as in fig.5, with node-computation
defined in eq.(5) can be seen as a directed graph. The basic
elements in such a graph are vertices (the nodes wherein the
actual computation takes place) and edges. Data elements (i.e.
tokens) are carried over the edges and consumed/produced by
the vertices. A WaveCore process can also be seen as a directed
graph, where the vertices are represented as Primitive Actors
(PA), which are arbitrarily interconnected by edges. Hence, a
finite-difference scheme can be mapped on a PA-graph. The
graph structure of a FD-scheme is very similar to the associ-
ated WaveCore PA-graph structure. This is exactly the reason
why a WaveCore process transparently represents the mapped
FD-scheme. There are basically three main requirements for
mapping a finite-difference scheme onto a WaveCore process:
(1) scalability, (2) the ability to move stimulus data(fnσ ) to the
model for each node and for each time-stamp n, and (3) the
ability to move node-data from the model for each node unσ
and for each time-stamp n. A WaveCore PU executes com-
piled PA’s sequentially in time, and the PU clock frequency is
limited. This implies that in many cases only a limited part
of a FD-scheme (depending on its size) fits on a single PU.
Therefore a FD-scheme needs to be partitioned and each par-
tition must be mapped on a PU. Partitioning of the FD-scheme

and mapping of partitions on different PU’s inherently means
that stencil-computation for partition-boundary nodes cannot
be done without gathering one or more node-values that be-
long to the stencil from ”neighbor” PU’s. The GPN-network
within the WaveCore PU-cluster is used for this purpose: par-
tition boundary-node values are moved to neighbor partition(s)
over this GPN network for every discrete timestamp. We call
this phenomenon ”radiation” since every partition radiates its
boundary values to its direct environment. Note that the radia-
tion intensity depends on the geometry (1D, 2D, 3D) and spatial
stencil complexity (order of the PDE). This is shown for a 2D
model of a fourth order differential equation (plate equation) in
fig.6. Radiation of node values is illustrated with arrows (e.g.
node uni,j+2 within partition A radiates to partition B). As can
be seen, in the worst-case some nodes need to radiate to three
neighbor partitions. The example node at position (i, j) de-
pends on 7 radiated node inputs from partitions B,C and D and
6 local node values. Node uni,j itself radiates to partitions B,C
and D. Note that ”radiation” is an inevitable side-effect of par-
titioning, which has also been described within the context of
physical model mapping on FPGA by Motu et.al [7].

The actual mapping of a FD-node onto a PA-graph is de-

Partition

Inbound 
Port

Outbound 
Port

Process

Partition

Partition Partition

Partition

Partition Partition Partition

Figure 7: FD scheme represented as a WaveCore process

picted in fig.6. The stencil computation is implemented with
a multiply-add type PA tree structure (shown as a ”black-box”).
The inputs of this part of the PA-graph are C-type PA’s (if ap-
plicable: GPN radiation entry-points) and outputs from differ-
ent local (i.e. within the same partition) nodes. The output of
this stencil computation part feeds into the temporal difference
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equation part. This part consists of four interconnected PA’s
(labeled 1,2,3,4). As can be seen, there is a transparent relation-
ship between the node-PA graph structure and the implemented
difference equation (4). The example node (i, j) itself radiates
to three neighbor partitions. The PA’s 6,7 and 8 are included
for this purpose. The execution of each of these PA’s (6,7,8)
initiate a GPN-write transaction. Moving stimulus data (func-
tion fnσ ) from outside to the model is implemented with C-type
PA(5). This PA is linked to the inbound port of the associated
WaveCore process. The LSU of the PU takes care that the re-
quired data is fetched from external memory through DMA and
moved to the memory location that is allocated to PA(5). Mov-
ing node data from the model to outside is implemented with
PA(9). This PA is linked to the outbound port of the associated
WaveCore process. The LSU of the PU takes care that the PA(9)
output data is moved to, and the input to PA(5) is moved from
external memory space via DMA. The abstract representation
of a complete FD-scheme as a WaveCore process (including
stimulation and response emission) is depicted in fig.7.

5. COMPOSITION OF PHYSICAL GEOMETRY
MODELS IN WAVECORE PROCESS-GRAPHS

The ability to capture finite-difference models in a scalable pro-
cessor technology is an important requirement to build musi-
cal instrument models. This requirement on itself however is
not sufficient. Other important requirements are (1) the ability
to combine different geometry models where each model may
run at a different sampling-rate, (2) the ability to move stimulus
and response streaming data between the model and the exter-
nal (e.g. analog or an externally connected computer that gener-
ates stimuli and post-processes generated model data), (3) real-
time processing with low latency, (4) the ability to add processes
which structures are not as regular as FD-schemes (e.g. tradi-
tional signal-processing functions or effects), (4) programming
flexibility and processor architecture abstraction. In the follow-
ing subsections we will demonstrate by three experiments how
these requirements fit on the WaveCore programming model
and processor technology.

5.1. Experiment 1: primitive six-string device in an acous-
tic room

We combined a simple guitar model with a virtual guitar player
in an acoustic room and described this in a WaveCore process
graph that is depicted in fig.8. The virtual guitar player is mod-
eled as a process called ”SixStringPlayer”. The implementa-
tion is a low-frequency oscillator which output if connected to
a tapped delay-line. As a result, this process emits a ”down-
strum” event at the LFO rate (sub-Hz frequency) by periodi-
cally generating a ”pluck” token. This token consists of six
PTE’s (one PTE for each string). The guitar model is described
in the ”Fdtd SixString” process. This process is composed of
six 1D FD-scheme instances (each one coded as a WPP) that
are connected to a ”SixStringBody” WPP. The six string models
are connected to the ”pluck” port where each string receives one
out of six PTE’s from the associated inbound token. Each string
is tuned in a way that the guitar model is tuned in an E-major
chord. Each pluck event causes a raised-cosine shaped pluck
at a fixed position in the associated string. The ”SixString-
Body” combines the outer edges of the six strings, combines
these and routes these back to the same strings (simple interfer-
ence model). Moreover, this WPP extracts a stereo audio signal
from the combined string vibrations and links this stereo signal
to the ”SixStringOut” port of the process. The ”SixStringOut”

E string, 82 Hz

A string, 123.5 Hz

D string, 164.8 Hz

G string, 207.7 Hz

B string, 247 Hz

E string, 330 Hz

S
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S
tr
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y

SixStringPlayer
Reverb

DAC

Scheduler

Pluck SixStringOut

DAC

AudioRate

AudioRateAudioRate
AudioRate

Fdtd_SixStringSixStringPlayer

FDN_Reverb

Figure 8: WaveCore Process Graph of six-string model.

port of the ”Fdtd SixString” process is connected to a reverber-
ation process called ”FDN reverb”. This process implements
a feedback-delay network that models a 3D space in an ab-
stract way (zita rev1, [10]). This is a simple model in terms
of number of PA’s, but fairly complex in terms of number of in-
stantiated delay-lines (66 in total). This process yields a rever-
berated stereo output, called ”DAC”. Finally the ”DAC” edge
is connected to a process that is called ”DAC”. This is not a
WaveCore process, but an abstract model of a Digital to Analog
Converter. All processes in the graph are synchronized to a sin-
gle rate called ”AudioRate” which is generated by the global
scheduler model in the same process graph. The WaveCore
compiler translates the entire process graph to an object file.
This object file can either be mapped to a target WaveCore pro-
cessor platform or simulated by the WaveCore simulator. For
this process graph we did both and noticed no differences be-
tween the simulated model and the real-time (48kHz sampling
rate) WaveCore processing on the FPGA board (Digilent Atlys
[11]) that we used.

5.2. Experiment 2: scalable 2D plate model

We wrote a 2D plate model generator with 2nd and 4th order
differential equations, based on equation (4). This generator
produces a scalable and partitioned WaveCore process graph
which is depicted in fig.9. The purpose of this process graph

Scheduler

AudioRate

PlateIO

Stim

Resp

Partition

Partition

Partition Partition

Partition

Partition Partition Partition

Fdtd_2D

Figure 9: WaveCore Process Graph of 2D plate model with
stimulus generation/response capturing.

is to demonstrate the scalability of FD-schemes as partitioned
WaveCore processes. Furthermore, we analyzed the mapping
characteristics using this model. The results of this analysis
are summarized in a next section of this paper. We applied
square-shaped partitioning where we tried to optimize the par-
tition size in such a way that a partition just fits on a targeted
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PU. The ”PlateIO” process enables verification of the model:
this process injects stimuli into the model and captures emit-
ted responses. We used the WaveCore simulator to verify the
functional correctness of the generated model. A simulation
snapshot is depicted in fig.10 We observed that a FD-scheme is

Figure 10: WaveCore simulation snapshot of 2D plate model.

uniformly scalable. The WaveCore compiler turned out to be
robust and fast: it took less than a minute to compile an FD-
model with over 8000 nodes to WaveCore object code.

5.3. Experiment 3: real-time 2D plate model on FPGA

We generated a 2D membrane model (2nd order PDE) and com-
piled this as a partitioned WaveCore process which is depicted
in fig.11. Within this process graph we connected the analog

Scheduler

AudioRate

Partition

Partition

Partition

PartitionPartition

Partition

Stim

Fdtd_2D_Atlys

Resp
DACADC

Figure 11: WaveCore Process Graph of 2D plate model on
FPGA, connected to ADC/DAC.

stereo input of the FPGA to two opposite diagonal corners of
the 2D node-grid. Likewise, we connected the other two di-
agonal corner node outputs of the 2D node-grid to the stereo
output of the FPGA board. These analog I/O connections are
modeled in the WaveCore process graph by the ADC and DAC
processes. This model runs real-time at 48kHz audio sampling
rate and ultra low latency where we connect an audio source
to the analog input of the board and a speaker to the analog
output of the board. We also simulated this process graph us-
ing the WaveCore simulator. We used an audio sound bite that
we linked to the ADC process, and played the produced (by the
DAC process) audio with a media player. We observed a similar
audible result, compared with the FPGA setup.

6. MAPPING EFFICIENCY

The efficiency of a processor technology can roughly be divided
into two aspects. The first aspect is the compiler efficiency:
for a given application domain, how efficient are the algorithms
mapped on the target processor architecture. The second aspect
is what we call ”silicon efficiency”: how efficient is the given
processor architecture w.r.t. silicon area. The overall efficiency

is ultimately a metric on how efficient the algorithms within the
target application domain are mapped on the overall processor
technology. For physical modeling on WaveCore we have in-
vestigated mapping efficiency, silicon efficiency for FPGA and
the overall efficiency.

6.1. Compiler efficiency

The mapping of a FD-scheme on the WaveCore processor is
most efficient when all the PU’s in the cluster execute arithmetic
PA’s for every PU instruction. This means that all processing ef-
fort is spent on the actual computation. Inefficiency is caused
by a non-ideal locality of reference: we introduced the concept
”radiation” which implies explicit data movement and replica-
tion of node-data over partition boundaries. The compiler it-
self also generates inefficiency that is caused by a non-optimal
memory allocation and pipeline scheduling. This inefficiency
results in so-called ”bubbles” in the GIU pipeline (caused by
data dependency conflicts of subsequent instructions) and addi-
tional instructions for operand pointer initialization. We inves-

Table 1: FD-partition mapping on WaveCore PU

Dim/ Nodes GPN- Comp. Stim Resp ILP
Spatial load Overh.

(%) (%) (%) (%)
1/2 292 0.06 4.51 1 1 5.56
2/2 169 3.22 4.10 1 100 11.10
2/2 169 3.66 4.93 1 1 7.14
2/4 81 4.54 6.39 1 100 20.00
2/4 81 4.72 8.22 1 1 16.67

tigated the compiler efficiency for FD-scheme partitions. We
optimized these partitions in such a way that the size just fits a
PU, where we fixed the PU instruction size to 2048. We investi-
gated mapping capabilities for 1D schemes (2nd order) and 2D
schemes (membrane and plate models). For each partition we
investigated the mapping influence of model stimulation (stim.:
the percentage of nodes that are stimulated for every discrete
timestep) and response data movement (resp.: the percentage of
node values that are moved from the model for every discrete
timestep). Table 1 summarizes the PU-mapping efficiency fig-
ures. The ”GPN-load” figure expresses the percentage of clock-
cycles in which GPN transactions (radiation) are initiated, rela-
tive to the overall thread-size. The ”Comp. Overh.” figures ex-
presses the percentage of added instructions, due to compile in-
efficiencies. Ultimately, the ILP (Instruction Level Parallelism)
number is an important metric which expresses the averaged
number of required GIU instructions per FD-node.

6.2. Silicon efficiency

We mentioned that the WaveCore processor is implemented as
a softcore and described in a HDL (Hardware Description Lan-
guage). This HDL implementation is configurable at compile-
time (within this context ”compilation” means the process of
mapping the HDL description of the processor to the targeted
technology). The most important configuration parameters are
PU-cluster size (number of PU’s) and PU memory configuration
(i.e. instruction memory size per PU). The HDL description of
a configured WaveCore processor instance can be compiled to
a target technology: either FPGA or ASIC. The target technol-
ogy, combined with application requirements dictates the opti-
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mal processor configuration. Typically the most important con-
straints within a given technology are the amount of embedded
memories, feasible clock frequency and the amount of logic-
gates. The execution of a PU-thread is always linear: a PU does
not support branches, loops or jumps in the program flow. This
means that the number of instructions that can be executed dur-
ing one sampling period can be expressed by eq.(7).

Cp(fs) =

{
Npu.Cimem if fs ≤ fd
Npu.fclk/fs if fs > fd

(7)

With Cp(fs) the PU-cluster capacity as function of the sam-
pling frequency,Npu the number of PU’s in the cluster, fclk the
PU clock frequency, fs the sampling frequency and Cimem the
instruction memory capacity. This hyperbolic relation between
PU capacity and sampling rate dictates the optimization of a
PU-cluster for a given application domain and a given technol-
ogy (e.g. FPGA), with fd = fclk/Cimem as ”drop-off” sam-
pling frequency” (the capacity Cp drops for sample frequen-
cies fs > fd). We used the relation in eg.(7), and the FPGA
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Figure 12: FDTD mapping capacity curves of WaveCore on
Atlys FPGA board
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Figure 13: FDTD mapping capacity curves of WaveCore on
ML605 FPGA board

constraints to derive PU-clusters for two target platforms: the
Digilent Atlys board (Spartan6, LX45 device) and the Xilinx
ML605 board (Virtex6). Our goal has been to utilize the avail-
able FPGA resources as much as possible. For the Atlys board
we derived a PU-cluster which consists of 8 PU’s and 2k in-
struction capacity per PU. For the ML605 board we derived a
PU-cluster which consists of 55 PU’s where 23 PU’s have 4k
instruction capacity each and the other 32 PU’s have 2k instruc-
tion capacity each. The resulting FDTD mapping capacity pro-
files for both mentioned boards are depicted in fig.12 and fig.13.
These capacity profiles represent the capacity (in #nodes) for

the scalable 1D and 2D (2nd and 4th order) FD geometries
that we analyzed in the previous sections of this paper, as a
function of the normalized sampling frequency. The ”upper-
limits” in the figures represent the theoretically maximum per-
formance, with no compiler efficiency losses. The actual per-
formance depends on the achieved clock-frequency fclk. The
maximum fclk depends to a large extend on the GIU pipelining
and has an upper-limit that is defined by the floating-point arith-
metic. For the Atlys board we found a feasible clock frequency:
86MHz < fclk < 189MHz, or 42kHz < fd < 92kHz.
For the ML605 board we found a feasible clock frequency:
150MHz < fclk < 338MHz, or 37kHz < fd < 82kHz.
The lowest clock-frequencies are obtained without any pipeline
optimizations (push-button HDL compilation). The highest fre-
quencies require careful pipeline optimizations.

6.3. Overall efficiency

Ultimately, the most interesting efficiency characteristics are
determined by the ability to map real-life application cases (vir-
tual instruments) onto a given processor technology. Estimation
of model complexity is not straightforward since the complexity
of a physical model of a musical instrument in terms of #nodes
depends on may aspects, such as the frequency-dependent speed
of sound on wood and other material and geometry dependent
parameters. The required sampling rates for this application
domain vary according to the nature of the modeled objects and
may range up to approximately 500 kHz. An example of a re-
alistic instrument model is the Banjo. This model is composed
of 5 strings (560 nodes in total, 1D, 65kHz sampling rate), a
membrane (2048 nodes, 2D circular shaped, 128kHz sampling
rate), an air-filled cilindrical shaped 3D space (8192 nodes, 3D,
65kHz sampling rate) and the bridge (512 nodes, 2D, 128kHz
sampling rate) which is the interface between the strings and the
membrane. Pfeifle et. al. have been able to map a fully func-
tional Banjo model using the methodology as described in [8]
on the ML605 board where the majority of the FPGA resources
are utilized. We made an estimation on the feasibility to map
this model on the ML605 board using WaveCore technology,
based on the obtained capacity curves in fig.13 and reasonable
estimations of required composition interface overhead. The
outcome of this (optimistic) estimation is that it is probably fea-
sible to map an instrument of this complexity on the ML605
board where approx. 75% of the WaveCore cluster capacity
would be utilized. However, a couple of performance/efficiency
optimizations will need to be done to the technology. (1) The
required minimum PU cluster clock frequency will be approxi-
mately 250MHz. (2) Automated partitioning of geometry parts
to maximally utilize the PU capacity is necessary. (3) We found
out that data memory allocation (performed by the WaveCore
compiler) is too greedy, resulting in a too large data memory
footprint. A more efficient data memory allocation however is
conceptually possible.

7. CONCLUSIONS AND FUTURE WORK

We have investigated the feasibility of using WaveCore proces-
sor technology for real-time physical modeling purposes. We
have focused on the ability to map FD-schemes with differ-
ent dimensions and different PDE orders. Furthermore we fo-
cused on the ability to use this technology to compose virtual
musical instrument models. We did this by demonstrating the
process-graph oriented programming methodology that enables
the combination of different processes that are possibly multi-
rate and are possibly implementations of different modeling meth-
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ods (e.g. FD-schemes, combined with FDN or arbitrary data-
flow oriented structures). We observed a high level of trans-
parency between the physical models and the actual implemen-
tation of such models in WaveCore language. We also observed
a good efficiency, despite the fact that there is a reasonably
high versatility in the programming capability and abstraction.
In particular, the programming versatility and abstraction com-
bined with a good mapping efficiency results in our conclu-
sion that WaveCore is a promising processor technology for vir-
tual instrument modeling. Future work is the mapping of one
or more musical instrument models on a suitable FPGA plat-
form where the biggest challenges seem to be high sampling
rates for some geometry parts and high-bandwidth off-chip re-
sponse data funneling. We have found possible optimization
areas within the technology. Automated partitioning of large
process-graphs is an important though currently missing step in
the mapping process. Next to this we have found a few opti-
mization options that can further enhance the efficiency of the
processor technology.
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