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ABSTRACT

Arthur Benade introduced the notion of a tone-hole lattice in
the early 1960s. He found that there exists a so-called
“cutoff frequency” that is determined by the structural
dimensions of the tube and its side-holes. Since then several
other researchers have studied the properties of the tone-hole
lattice, especially dealing with the row of open tone-holes.
When simulating mechanical and acoustical systems it is
convenient to use electromechanical and electro-acoustical
analogies. Highly developed theories for electric networks
can thus be directly used to simulate the behaviour of
musical instruments.
Special software applications, such as Micro-CAP by
Spectrum Software of California, an electrical Circuit
Analysis Program, can be used for this purpose. To build a
bridge from the electrical to the mechanical and acoustical
world there exist so called "macros" that were developed
mainly by the second author, with mechanical input
parameters, so the user need not necessarily think in
electrical terms. Examples of such macros are two-ports
representing lossy cylindrical and conical tubes, two-poles
for short holes etc. all of which occur in wind instruments.
Other useful two-ports are ideal transformers for coupling
mechanical and acoustical parts of the model.
The impedance-versus-frequency diagrams that are easily
derived with the aid of  Micro-CAP can help to detect
influences of the several dimensions of the tone hole system.
It is also possible to show pressure and flow profiles along
the axis of the tube with opened and closed side-holes. Such
work can lead to a further understanding of the properties of
real woodwind instruments.

1. INTRODUCTION

The applicability of the simulation tool for the tone-hole
lattice was tested using the work of Benade as an entry
point. In his book Fundamentals of Musical Acoustics [2],
Benade gives an example of a tube 61 cm long extended by
a tube with side holes. The impedance curve is shown in Fig.
21.3 of the book. No more details about the tube are given
there. Using the simulation tool, the authors were able to
reconstruct approximately the dimensions of the tube
Benade used for his measurement. The influence of the
cutoff frequency can be seen clearly.

Throughout this article geometrical parameters are used with
the symbols Benade introduced in [1]. The diameter of the
cylindrical bore is 2a, the radius of a tone hole is 2b and the

distance between the holes is 2s. For the depth of the hole
(thickness of the wall) the symbol t is used.

Fig. 1, Arthur H. Benade’s tone-hole lattice

Three T-shaped elements of the tone-hole lattice are shown in
Fig.1 (copy of the upper part of Fig. 21.8 on page 448 of [2]).
Here we deal only with the lattice of open tone holes. Thus the
air in the holes can move freely and an inner and outer end-
correction needs to be taken into account. Benade uses the
definition te = t+1.5b for the effective length of the side holes.

Section 2 is an attempt to reconstruct the tone-hole lattice that
Benade measured to get Fig. 21.3 (page 435 of [2]). In section 3
the impedance curves for the non-lossy case, based on an article
of Moers and Kergomard [4] are shown. And finally section 4
shows a simulation of the lossy case, using the macro for lossy
tubes with circular cross section.

The main purpose of the present article is to check the
simulation against the measurement results and theoretical
formulations. The whole article is about the regular tone-hole
lattice. But different values of a, b, s, and te are used in the three
following sections. For all simulations the speed of sound is
taken to be 346.2 m/s, the viscosity coefficient 1.86x10-5

kg/(ms) and the density 1.186 kg/m3 (air at 23°C).

2. BENADE’S TONE-HOLE LATTICE

Beginning on page 434 of [2] Benade gives an incomplete
description of the geometrical setup for the curves of  Fig. 21.3
[2]. For the upper curve (pipe alone) he quotes a length of 61 cm
and a first peak of the input impedance at 140 Hz.

The simulation in Fig. 2 corresponds to the lower half of Fig.
21.3 [2]. The dimensions are given in the figure directly. The
first part of Benade’s tube (containing no holes) had to be
shortened to 542 mm to keep the first resonance at 140 Hz.
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Fig. 2, Reconstruction of Benade’s experiment

Fig. 3, fc constant, t and b variable

Fig. 4, s variable, leading to different values of fc
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The simulation is based on an increased value for the shear
viscosity (4.8x1.86x10-5 kg/m/s). The factor 4.8 was found
experimentally, in order to achieve a similar height of the
impedance peak at 140 Hz as Benade measured. A minimal
number of 72 open holes is needed to bring the peaks to the
right of the cutoff frequency down to less than 4 MOhm
(corresponding to Fig. 21.3 of [2]). It is important to stress
that the cutoff frequency as indicated in the figure is
calculated for the non-lossy case, as stated in [1] in the text
(damping is neglected) above equ. (8). The simulation
however - as in Benade’s experiment - involves lossy tube-
and lossy hole-elements.

Some interesting experiments can now be done with the
model. Using the same sizes for a and s as before, but
changing b and t in such a way that fc stays at 1133 Hz, one
obtains the result of Fig. 3. Here the x- and y-ranges have
been reduced compared to Fig. 2. We see here that there is
not much difference in the overall picture. Only the peaks of
the wiggling part above cutoff occur at different frequencies.
The envelope curve does not change at all.

In the next experiment all geometrical parameters except s
are kept constant. This leads to different cutoff frequencies,
as can be seen in Fig. 4. For the smallest s (10 mm) the fifth
resonance peak of that part of the tube without holes
(approx. 9 times 140 Hz) falls below cutoff, thus not
affecting the peak very much. The tube without holes had to
be lengthened for the smaller values of s, to keep the basic
resonance at 140 Hz (552mm for s=10mm, 547mm for
s=12.5mm).

3. TWO TREATMENTS OF THE
NON-LOSSY CASE

Benade gives a formula for fc in [2] on page
449:

This formula was used for calculating fc in the preceding
section although it contains a small rounding error. Setting
the denominator to zero in the original formula (8) of [1]
gives the correctly rounded value of 0.109 as the first factor.
In this section the more accurate value is used to calculate
Benade’s cutoff frequency.

The original formula (8) of [1] is shown here (2):

Solving for zero in the denominator was done with
MicroCAP by searching the pole of the reciprocal value of
the denominator on the frequency scale. Since the circuit
analysis program has numerical limitations a very big but
finite value is the result for the peak height.

Using the parameters of Fig. 2, the cutoff frequency now
becomes 1123 Hz (=1133 x 0.109/0.110).

But there is also another value of the cutoff frequency, that
can be derived from the article of Moers and Kergomard [4].
On page 986 of [4] we see the elements of the transfer
matrix of a single T-shaped element for the non-lossy case.
Zc (corresponding to Benade’s Zo, “o” probably standing for
“open”) is not given explicitly in [4]. But it can be easily
calculated by substituting the matrix elements B and C into
the equation for Yc

2 (given below equation (2) on page 986).

By eliminating all the abbreviations used in B and C and
using Benade’s symbols one obtains for Zc:

A detailed derivation and a comparison with equation (8) of
[1] can be found in the appendix 1.

Moers and Kergomard [4] give a good approximation of fc in
(6) on page 987. It is very close to the frequency where the
denominator of Zc becomes zero. Rounded to one Hz fc is
1140Hz in both cases, either using (6) or looking for the pole
of Zc calculated from the matrix elements B and C.

Next we see a simulation using a number of simple T-shaped
elements (100 elements all in one dimension). Fig. 5 shows
the beginning of the tone-hole lattice. Included are the
impedance sensor at the input and one of the T-shaped
elements. Grounding means that an aperture is open because
a current (volume flow) can flow into zero voltage (zero
pressure).

The two components of the T-shaped element are a non-
lossy tube (transmission line) and a non-lossy inductor. The
tube elements are simply delay lines, giving a delay
corresponding to the speed of sound c and the length s of the
element. The inductor represents the acoustic mass of the air
in the hole (including inner and outer end-corrections). The
inductance becomes L= ρte/(πb

2), taking into account that
the acoustic part is linked to the electrical part by a factor of
1/area2 (area=πb2). The density of air at 23°C is
ρ=1.186kg/m2 in these simulations.

Fig. 5, Impedance sensor and one T-shaped element
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Fig. 6, Input impedance of tone-hole lattice with 100 open holes and Zc

Fig. 7, Input impedance of tone-hole lattices with, 100, 50 and 20 open holes and Zc

Now the simulation is used to show the agreement of the
formula for Zc with the model. The magnitude of the input
impedance for a tone-hole lattice with one hundred open
holes is shown (Fig. 6). Unlike the preceding section, there
is no part of the tube without side holes. As there are no
losses, the peaks theoretically go to infinity and the minima
are zero. It is interesting to see that the peaks come closer
together, when approaching fc from higher frequencies.
Reducing the number of open holes leads to fewer peaks and
fewer minima and the lowest peak moves further away from
fc. Fig. 7 shows the situation for 100, 50 and 20 open holes
in a smaller frequency range than before (again no
damping). Fig. 7 shows the same for 100, 50 and 20 open
holes in a smaller frequency range than before (again no
damping).

4. PRESSURE AND FLOW ALONG THE
TUBE, LOSSY CASE

We return now to the model with losses. Again there is an
artificial increase of the shear viscosity used, as described in
section 2 (4.8 x 1.86 x 10-5 kg/m/s). The T-shaped element
now consists of tube elements (macros) only (see Fig. 8). A
detailed description of the tube model is given in appendix 2.
The tube elements themselves do not contain any end
correction. Therefore the length of the side hole (tube) has to
be set to te (Benade’s fomula te =  t + 1.5b is used). The
measuring points Px and Fx will be described later in this
section. There are 68 open side holes used in the following
experiments. At the end of the complete lattice a radiator is
placed, as shown in Fig. 9.
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Fig. 8, Setup for impedance measurement;
impedance sensor, ampere meter, measuring points

Fig . 9, End of the tone-hole lattice, with radiator

Fig. 10, impedance chart for 68 open holes

The input impedance is computed and shown in Fig. 10. As
there are losses, according to the theory there is also a small
real part below cutoff (blue) and a small imaginary part
above cutoff (green). Benade’s fc (non-lossy case) is

Fig. 11, Setup for pressure and flow measurement

indicated for comparison (red). There are more resonances in
the range above 5 kHz, also including a negative imaginary
part. This is not considered further here.

Now to get an idea of the pressure and flow in the tube, the
impedance sensor is replaced by a sine voltage source (Fig.
11). The frequency of the peak (1093 Hz) is chosen for the
experiment and the voltage is set to 1V (1Pa). The result
(Fig. 12 and Fig. 13) is not a simple standing wave, but a
combination of a standing wave and a travelling wave. For a
pure standing wave, the imaginary part of the pressure
would be zero along the whole tube.

Voltages at points Px (x=0 ... 136) correspond to pressure
values (Pa), voltages at points Fx (x=0 ... 136) to volume
flow (m3/s). Point P0 (F0) would be the mouthpiece tip of a
woodwind instrument, P136 (F136) the end of the bell. The
open holes are at the positions Px with x being an odd
number (1 to 135).
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Fig. 12, Pressure and volume flow along the tube with 68 open holes

Fig. 13, Magnitude of pressure and flow along the tube with 68 open side holes, logarithmic scale

5. CONCLUSION

In this article some simple structures of tone-hole lattices
were analysed showing the suitability of an electronic circuit
analysis program to study acoustical questions concerning
musical wind instruments. It can be seen that there is good
agreement with theory and experiments in the relevant
literature. This opens the way to study many other questions.
This could be the impedance, pressure and flow properties of
wind instruments with irregularly placed tone-holes (which
is the normal case). There also exist macros for conical
tubes, tubes with rectangular cross section, etc., developed
by the second author. Thus also conical instruments, such as
oboes, bassoons and saxophones could be studied.

The user interface and the circuit diagrams are very intuitive,
so the use of this kind of software simulation is also valuable
for teaching and studying. There exists more literature

treating the cutoff frequency and the side hole, e.g. [5], [6],
[7] and [8] that could be used for a cross check. But most
important is the fact that real instruments could be analysed,
based on the geometrical dimensions of the bore and the
holes.

The method of raising the shear viscosity to cope for losses
that are not known in detail could be improved by looking
into the cause of the losses (turbulence, porosity, friction,
radiation, etc.) and trying to model these parameters
effectively.

A very ambitious aim would be to try to include nonlinear
effects and/or two-dimensional simulations. This would
mean developing new, probably rather complicated macros.
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6. APPENDIX  1

Here it is described how to express the characteristic
impedance Zc from Moers and Kergomard [4] in a form
similar to that which Benade used in [1].

First the matrix elements B and C [4] are divided by j. Then
the variables Y, Zc, k are replaced by ω (=2πf), ρ (density of
air), c (speed of sound), a (tube radius), b (hole radius) and te
(effective hole depth). For the length of the tube elements s
is used, as Benade did in [1]. All necessary formulae for
these replacements can be found on page 986 and 987 of [4].

This gives B/j and C/j in the form of

Therefore Zc =1/Yc becomes

Now reducing the fraction by

gives Zc in a similar form as the Zo in (8) of [1].

Comparing the two equations for Zc and Zo (8), one finds
that only the term cot(ωte/c) in (8) is replaced by c/(ωte).

Remark: Benade uses Zc for “Z for tubes with closed holes”
and Zo for “Z for tubes with open holes”, whereas in [4] Zc

stands for “characteristic impedance”.

These two functions are very similar for frequencies where
λ/4 is much bigger than te. This is valid for the cutoff
frequency of 1140 Hz and te being about 15mm. Benade
evidently treated the side-hole as a tube, whereas Moers
simplified the model to a rigid mass in the side hole. The
latter method is sufficient for many applications and runs
faster on a computer. Fig. 14 shows the curve shapes of the
two different equations for Zc, Zo and the real and imaginary
parts thereof.

Fig. 14, comparison of fc, side hole as a tube and only mass
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7. APPENDIX  2

Here we describe the model (macro) for the lossy tube.
There are two versions of the macro. One simple, for almost
plane waves in tubes where Bessel functions are not needed.
This is only valid for frequencies very much higher than
fo=64*visc/(pi*rho*diam^2, cylindrical tube). The second
model is also applicable for low frequencies (small
diameters). It is based on Bessel functions and takes into
account the friction on the walls of the tube. Simulation with
the latter can be time consuming. The diameters used in the
simulation (a_Benade = 15 mm, b_Benade = 3.35mm
require only the simple model, so this is described here in
detail.
The physical quantities used for the simulations are:
Standard temperature: Celsius_standard = 23 °C
Speed of sound: speed = 346.217 m/s
Standard pressure: Patmos = 101.325 Pa
Density of air (1% argon): rho = 1.186 kg/m^3
Shear viscosity: visc = 18.6*10^-6 kg/m/s
Dimensionless loss factor: loss = 4.8
Specific heat ratio (cp/cv): kappa = 1.40267
Prandtl number: prandtl = 0.719551

The diameter of the cylindrical tube with circular cross
section is “diam” and its length is named “length”. The
frequency in Hz is called “F”. The circuit diagram of the
macro is shown in Fig. 15. It includes the elements of the
hybrid matrix shown in Fig. 16, together with the
transmission matrix elements that are calculated from the
propagation constant gamma and the characteristic
impedance zwl1.

Fig. 15, circuit diagram of the lossy tube macro

Fig. 16, Definition of the matrix elements
________________________________________________

In Fig. 17 and Fig. 18  the definitions for gamma and zwl1
are shown in the form as they are used in the Circuit
Analysis Program.

Fig. 17, Definition of gamma

Fig. 18, Definition of zwl1

________________________________________________
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